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This paper examines the benefits from active learning in a stochastic control problem. In a linear
model with parametric uncertainty, there are gains to probing, but the probing component of the
loss function often has nonconvexities. I show that they can arise for two reasons: (1) failure of
the precision matrix of the parameters to increase monotonically with the control variable (the
covariances between a state variable and the random parameters can reduce the information
gained from probing) and (2) changes in the path of future state variables induced by modifying
the certainty-equivalent control. If the parameter on the control variable is large, a small change
in the control can cause a much larger change in future state which, for a given level of
uncertainty, makes probing more costly.

1. Introduction

This paper examines the benefits from active learning in a stochastic
control problem. In a dynamic programming framework with parametric
uncertainty, there are often gains to probing, moving the control variable
away from its certainty-equivalent value, so as to increase precision of
parameter estimates. The controller willingly trades current-period losses for
greater certainty about the future decisions he must make.

Kendrick (1978) has reported from computer simulations that costs do not
decrease monotonically with increases in the control variable. The probing
component of the loss function has nonconvexities. Since this greatly compli-
cates the search for the optimal control, I try to pin down the source of these
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nonconvexities. 1 show below that the nonconvexities can arise for two
reasomns.

The first possible cause is the covariance between the unknown parameters
and the state variable. An agent updates his certainty-equivalent beliefs
recursively in the programming problem, despite receiving no actual realiza-
tion on the state itself. Whether or not a particular realization of the state is
informative depends upon its covariance with the parameters. If the correla-
tion between the state and the random parameter falls, this can make
increases in the control value less valuable. Increases in the control variable
ultimately do reduce the parametric uncertainty to zero in the limit, but
between the certainty-equivalent value and this limiting value there will often
be at least one region in which increases in the control value raise parametric
uncertainty before it begins to decline. :

The second cause is the changes in the path of future state variables
induced by a change in the certainty-equivalent control. If the parameter on
the control variable is large, a small change in the control can cause a much
larger change in the future state. Even if the increase in the control value
reduces parametric uncertainty, the oscillations induced by the change in the
first-period control can dominate this effect.

Section 2 states the adaptive control problem in a fairly general way.
Following Bar-Shalom and Tse (1976) and Kendrick (1981), I divide the
cost-to-go into three components — deterministic, cautionary, and probing.
The probing term, which describes the gains from active learning, is studied
in greater detail in section 3. The rather involved intuition about the
nonconvexities is developed further in section 4. Section 5 has a numerical
example and simulation of these results in the context of the McRae (1972)
problem. Section 6 has a summary and conclusion.

2. A linear adaptive control problem

Consider a policy authority whose objective is to minimize an expected loss
function L:

N-1
Li=E| Lot X Lol e |, (1)
k=0

where u is the authority’s control variable and x is a state variable, which
evolves according to:

Xpo1=ax, +bu, +e,. (2)

g, is an additive disturbance term, distributed normally with mean zero and
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variance Q:
e ~N(0,0). (3)
a and b are assumed to be unknown parameters, with prior mean
Ayp
B0 = (4)
l bl]lU
and covariance
(5)

Naa var( @)oo cov(a,b)yp
cov( b, a)gy var( b)mu A

The recursive aspect of this problem can best be seen by stating this
objective as a dynamic programming problem:

J}\f—kEminukE[Lk(uk’xk) +J£'f_k_||x"‘,u"'], (6)

with x and u realizations on the control and state variables through period
k. We will refer to JgF , as the cost-to-go. The first step of the optimal
control is to solve (6) for the certainty-equivalent path: (xkln,ukm)f:“, which
is the optimal control for the model with all random variables set to their
expected values.

In Bar-Shalom and Tse and Kendrick, the cost-to-go is separated into
three components — the deterministic or certainty-equivalent loss, the cau-
tionary cost, and the probing cost. The certainty-equivalent loss evaluates (1)
at the certainty-equivalent values:

N-1

JE = Ly(xyp) + Y Li(xj0,u50)- (7)
j=k+1

The cautionary cost is given by

N-1
J&—k=tr(Kk+!Ek+1|k)+ D (K. ,0), (8)

j=k+1

where k are Riccati matrices to be defined below, and 3, .,, is the
one-period-ahead conditional covariance matrix for all the random elements
in the system. This is developed further in section 3.1.
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Of greatest interest in this paper will be the probing component:

N-1
InN-k= Z tr(‘g;?jzju')* (9)

J=k+1

where % is a complicated expression involving many system parameters and
34« is the contemporaneous conditional covariance matrix.

Kendrick (1978) has noted that this term often is nonconvex. As this
contributes to nonconvexities in the entire cost-to-go, it makes searching for
the optimal control much more difficult. Understanding the source of these
nonconvexities will be useful in figuring out their importance in the dual
control problem.

3. The gains from probing

The nonconvexities in the probing cost term have not, as of yet, been
understood analytically. Kendrick (1981) reports numerical results for the
multi-period McRae problem that confirmed similar findings by Norman
(1976). Their numerical analyses, however, have not yielded any insight into
the source of the nonconvexities.

The intuition that volatility reduces uncertainty turns out to be correct only
in special cases. With a single unknown parameter, 3°? will decrease
monotonically with the sum of squared residuals for the state. This is not
always true with more than one parameter though. Section 3.1 shows that
under highly plausible conditions, probing may be less informative over some
range.

The Riccati matrix terms$ are developed in section 3.2. Even if probing
reduces uncertainty, the path of future state variables will be affected by
movements in the control variable. The Riccati matrices will tell us the cost,
in future periods, of probing.

3.1. An examination of the precision matrix %

The system covariance matrix measures the uncertainty over the state and
the parameters:

e
il (10)
S
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where

k= [(xk‘xm)(xk_ka)lxk]s (11)

SRk = (Eklk) _E‘{(xk_xk|k)(@k_@k|g)lxk}, (12)

and £ is given by (5). Since x is not measured with error in our problem,
x4, Will always equal x,, and these two terms will always equal zero.

Projecting ahead though, they will not equal zero because of parametric
uncertainty and the disturbance term on the state equation:

2= E[(xk+l = Xpe 1) (Xpan _-"k+llk)l'rk]’ (1)

Ef:likz(zkirllk E[(x;‘ xk+11k)(@A+1 @k+lik)lx] (14)

To obtain approximations to these terms, Kendrick takes a second-order
expansion around x, . =[x, 4,10, =[x, i llag by 1] This yields

5% ok =%z var(a) gy + 2x,uy cov(a, b) g + up var(b) e + Q, (15)

which is just the conditional variance of the normally distributed multivariate
random variable x, , |, given x,. Similarly, one finds

x var(a) g + uy cov(a, b) i

(16)

2k = x, cov(a, b) g + g var(b) g |

Prior to receiving new data, the parameter covariance matrix is unchanged:

300
Eh 1 = km

Updating the parameter covariance matrix is a Kalman filter problem, with
future variables set to their certainty-equivalent values. For our problem:

k1= 2k+l|k 2k+1|k(£k+l|k) Ek+1|k (17)

From (3.8) the standard intuition is straightforward. Assume only b is an
unknown parameter, making 3 a scalar. Eq. (17) reduces to

var(b) g 1x+1 = var(b) gy 1k

e uk Var( b)klk(ui Var(b)m 74 Q) - ]uk Var(b)k‘k 5

(18)

JEDC—D
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which we will show below is decreasing monotonically with the control

variable u. This will, all other things equal (which is not the case), reduce the
probing cost. I now turn to look at those other things.

3.2. The Riccati matrix terms #

I begin this section by defining the underlying elements of the term .%. To
save on notation, all random variables will be assumed to equal their period
k certainty-equivalent values, e.g., b=b;,, x; =x;;, J = et NG

By = [ K2 +FaKii | b+ pibo |
Xx : X6 X T
x [b[ K5 fa+ K2 + [ pibe]”]. (19)
where p{ and K,., are Riccati matrices, fg, =[x, u,), p,=[4,+
bK;*,b]7Y, and by =[0 1]". A, is a penalty matrix for deviations from a
desired control value . The Riccati matrices may be found recursively,

working back from terminal values, K3* = W), where Wy, is a penalty matrix
for deviations of x, from its target value %. In turn, one can then calculate:

K =aK% a — [aKis b [ bKEL 0] + W, (20)
If A, =0and W, =1,Vk, then this term is simply equal to one.
For p, 1 first pin down the terminal value of a component term, py =

— Wy Xy, where %, is the desired target value for x in period k. The p’s may
then be found recursively according to

b= _[aK;ilb]“k:[bp"k+l]+a15k+1_ka-k' (21)
The p’s relate to the p’s by
pr=Ki'x, +p,. (22)
These give, along with the terminal condition K§* = 0, the Riccati matrices:
KQ* = [ fo'Kita + K@i Ja +piv1ae
~[[fa"Kiz s + Kb + b bol |l KL ia],  (23)

with ag = [1 0]”. The last set of Riccati matrices, K¢, also have a terminal
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value of zero. They are then found by recursions:
KPO = fai [ Kt fou + K] + [ K2 fo + K2
= [( ékTKfii = Kff,)b +P§+1b9]#k
X [BKEE 1 fé+ Ki1) + pisabo] - (24)

These expressions are not particularly intuitive, except in some simple cases
which I will look at below. The probing cost term, in the absence of
measurement error, will only depend on K§* and K2*.

4. Comparitive statics of a change in the control value

This section examines changes in the system in response to an increase in
the control variable u, away from its certainty-equivalent value. The probing
cost will then depend upon how the uncertainty in the system changes,
33y x/9u,, and how the Riccati terms change. Random variables are equal to
their period 0 values, unless otherwise noted. I will regard as the leading
example that cov(a, b) is negative and larger in absolute value than var(d).

4.1. Effects on the system covariance

Given the Kalman filter update (17), the posterior precision will depend
upon the update term —3¢F, (355 ,,) 7' 25 . Since 3 is a scalar-valued
expression, I will rewrite the update term as

dll dlz] rxy—1 !
[dZI d22 ( o

where the d;; are the elements of the cross-product z‘;‘{ngﬁ. Differentiating
with respect to the control value, I get

ad,,/du, dd,,/u
00 SRR b ol
X1/ = [adn/auu adzz/a”ﬂ](

¢ a e xx
+[d: “;j( 1) A(55) /o (26)
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Let’s consider first the d,;:

d,, = [x2 var?(a) + 2xgu, cov(a, b)var(a) +ucov(a,b)]|,

(27)
ad,, /duy = [2x, cov(a, b)var(a) + 2uycov?(a,b)]. (28)

A large variance of a combined with a negative covariance of a,b can, for
example, make this negative. In this instance, the precision of a will fall with
increases in the control value, contrary to the standard intuition.

To understand better why, consider the term d,,/%7}5. d,, is the square of
the conditional covariance between a and x, and recall 3** is the conditional
variance of x. I can rewrite this as

d“/fo{)=p,,[,cov(a,x).|u, (29)

where cov(a, x), ;= x, var(a) + u, cov(a, b), which is just the upper row of
305, and p, = cov(a, x),,p/2{. One can interpret the term p,, as ‘the
pseudo-correlation between the random variables x;, and a,,. The deriva-
tive with respect to u, contains all the intuition,

c':‘[p1IU cov(a,x}lm] /Uy =py cov(a,b) + cov(a, x) dp 10/ ug.

(30)

The first term indicates, given current information, what happens to the
conditional covariance of a and x. For our leading example, p,,> 0 and
cov(a, b) <0, this produces additional uncertainty and lowers precision. The
second term tells us whether the pseudo-correlation improves with increases
in the control value, i.e., does it provide more information. Expanding it and
simplifying a bit:

cov(a, x)yp dp 10/ duq

cov(a, x)y0(2u, var(b) + 2x, cov(a,b))

=pyo|cov(a,b) — =
1j0

(31)
When the expression in parentheses is negative, all the terms in (30) are

negative. This indicates that realizations of x are less informative to the
controller. The posterior variance of a will increase with increases in u, until
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it drives cov(a, x), , negative. The intuition is identical for the other posterior
variance. The argument is the same, but with the signs reversed for the

posterior covariances.
For the off-diagonal terms:

dy, =dy, =[x cov(a,b)var(a) + ufcov(a,b)var(b)
+xquycovi(a,b) + xqu, var(a)var(b)], (32)
dd,,/uy = [2uqcov(a, b)var(b) +x,cov’(a,b)

+x, var(a)var(b)]. (33)

This term can again be positive, meaning that the covariance will be larger in
absolute value, if the variance of a is very large.
And finally:

o= [Jr:f]2 cov2(a,b) + 2xquycov(a,b)var(b) + uf varz(b)], (34)
dd, /ug = [2x,cov(a, b)var(b) + 2u, var?(b)]. (35)

The variance of a does not enter this term, but if the cov(a, b) is large, in
absolute value, relative to var(b), again this term can decrease with u.

The other effect of a change in the control value at period zero is to
change the one-period-ahead conditional variance of x,

a356/0uy = 2uqvar(b) +2x, cov(a,b). (36)

The sign of this term depends upon the parameters. The uncertainty over x
though can be reduced for some u, if the cov(a,b) is negative. For large
enough u,, the sign will always be positive if var(b) > 0.

In the case of a single unknown parameter b, (26) reduces to

_[ 2u, var?(b)Q l @

(ud var(b) + Q)2
which is clearly negative, confirming the single-parameter intuition.

As for the second derivative, 4239 /duj, the diagonal entries will be
negative for large enough u. Eventually then, the variances of a and b will
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decrease with the control value at a decreasing rate. The off-diagonal terms
are positive. The covariance will decrease to zero, also at a decreasing rate.

4.2. Effect on the Riccati terms

Some of the Riccati terms will be independent of the control value. Ki*
depends only upon the parameters of the state and the penalty matrix W.
depends only upon K%, and b. p; depends only upon the state parameters
and Ki*. As these don’t vary with u, they are not impacted in any way.

All of the other terms will be affected, principally through their effect on
the change in the certainty equivalent values of x and u. If, for example, b is
negative, an increase in u, will lower x,,, and this in turn requires an
adjustment of u,. These effects are all registered in the Riccati matrix term
K 2*. To save on notation, as in section 3.2, random parameters are equal to
their period 0 certainty equivalents, b = b;,.

Next period’s expected value of x is the first to change. It moves by bAu,,.
I then re-evaluate the first-period certainty-equivalent control:

Uyo = — k[ bK3 ax, o + B3], (38)
with first derivative
duy/uy = —pab?K3*. (39)

This then enables one to find the second-period expected value of x:

3x50/uy = ab — p,ab*K3*, (40)
and so on:

Oyyo/ g = — @KL 0%/ Uy, (41)

0x 0/ 0 =adx, _/Oug+bouy_,/uy. (42)

For large enough b, these changes can come to dominate the probing cost.

These new certainty-equivalent values also provide the updated terms py.
pi moves by K{*b Au,, p5 moves by K5*(a Ax,, + b Au, ), etc. With these
in hand, I can then evaluate K9*, and begin that set of Riccati recursions.
fé will have the new certainty-equivalent values for x and u, and the p*
terms will reflect the new x values as well.
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Consider first the penultimate Riccati term, with K3* =1, K9* =0, and
PN =Xnj0"

. Xy 10 bxy_ 40
Kg—l = ] = [

me]
iy 110 by _ o+ Xnp

]X.U—N—l[b ,i{r'ra] +[ 0

(43)
Using (41) and (42), we can evaluate the partials with respect to x and wu:

K7\ /ou,

" (a _#N—1‘?’72}(1@*‘)5%\;—“0/3“0+axN|n/a“n
(ﬂ — Ky ]aszj{,’) My o/ — oy 1@bK T x5 /Uy
(44)

The signs of these terms obviously depend upon the parameters, but since
they enter the probing cost as a cross-product, their magnitude is probably
more important. Both @ and b enter exponentially, meaning that a very small
change in u, can lead to a great deal of fluctuation in the future certainty-
equivalent path.

Working backwards:

AKR* 5 /du,

i (a — HN--zaszﬁfl) 0x g0/ 0y + KN 30Xy _19/0Uy
(a —Hy -2“521{,%&)EE‘N—zm/a“u o #N—zﬂbKﬁrﬁrl 0X N 110/

+(a—ab®uy_, K ) 0KS~ | /9u,. (45)

There exists a possibility that the recursive Riccati term could dominate,
working its way back to all the earlier terms.

The overall change in %, defies easy explanation in all but some simplify-
ing cases. In the example below, I look at a two-period problem, which drops
out all the terms involving K ©*.

5. Numerical examples and simulation

This section takes up the MacRae (1972) problem. As this has been widely
studied in the literature, it will be an excellent vehicle to show how noncon-
vexities arise in the cost-to-go. Nothing pathological is required. Going from
one unknown to two unknowns or choosing a large b will prove sufficient.
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Consider first the penultimate Riccati term, with K3 =1, K9* =0, and

PN =ZXpjo!
axy_ 0 bx 0 Xnio
g = - ' X bKjja| + [ ;
KNZ, auN_u(]] [buN_,m +IN|0} sl Na] 0
(43)
Using (41) and (42), we can evaluate the partials with respect to x and wu:
31{3’11/5“.1
T (a _#N—lasz?)axw--:|u/a“u+axm0/a”u
(a M- |‘1sz}:'£) Oy _ 10/ Uy — Py 1abK N 9x v 0 /Uy
(44)
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more important. Both @ and b enter exponentially, meaning that a very small
change in u, can lead to a great deal of fluctuation in the future certainty-
equivalent path.

Working backwards:

61(3{3/%:,

(a o #N—zasz,EfoI)axN—zw/auu + KNS Xy g0/ 0Uy

(a = #N—zasz}%{ﬁ ) 6uN_2|0/3uu = #N—zabKﬁf—xl X110/
+(a—ab’uy K3 ) 0KG* \/du,. (45)

There exists a possibility that the recursive Riccati term could dominate,
working its way back to all the earlier terms.

The overall change in %, defies easy explanation in all but some simplify-
ing cases. In the example below, I look at a two-period problem, which drops
out all the terms involving K ©*.

5. Numerical examples and simulation

This section takes up the MacRae (1972) problem. As this has been widely
studied in the literature, it will be an excellent vehicle to show how noncon-
vexities arise in the cost-to-go. Nothing pathological is required. Going from
one unknown to two unknowns or choosing a large b will prove sufficient.
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be repeated one more time: u; = —(0.8)[(—0.5)(1.0)(0.7)(3.272) +
(—0.5)(1.0X3.5) + (= 0.5)0)] = 2.316. x5 = (0.7X3.272) + (—0.5X2.316) + 3.5
=4.632. 315 = (2)%(5)* + (2X(2)(3.257X—2) + (3.257)*(1)* + 0.2 = 4.752. Note
the negative covariance term. Increases in u, will, over some range, actually
lower this term,

E@xz[ 5 —2][ 2 ]= 3.486]
w=|-2 1[3.257 -0.743 |’

This is going to enter the 3¢ calculation as a cross-product.
Now, I can update the parameter covariance matrix:

““’=[_§ -ﬂ_[ 3.486 ](4_?52)_1[3.486w0.?43]

M —0.743
[ 2442 -1.445
- [ —1.445 0.884 | G0

The choice of u has indeed reduced parametric uncertainty, but not nearly as
dramatically in percentage terms as Kendrick did with a single unknown.

Now, turn to the Riccati matrices. The two-period problem obviously
simplifies things a great deal.

g|fl0
Rge= 0]

and
xee[33aJ0n + (o] - (33 ]-09 (1)

X [(0.8)(—0.5)(1.0)(0.7)]

~ [6.464
L2594 ) (51)

where pj = (1X(4.632) + 0.0 = 4.632. What really is of interest is the third
term:

Ry=()) = [ _éjﬁiﬁ][- 1.636 3.474)(0.8)

_| 2141 —4546
—4.546 9.655 |

This term will not figure very prominently until the next example.
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Table 1
Example 1 - Precision decreases with control value.,
State equation Variance of state disturbance
Xy =070%x, + — 0.50%u, + 3.50 0 =0.200
Target values for state and control Penalty parameters
#=0.000, @=0.000 A=10, W=10

State and control variables

Xeo U
k=0 2000 3.757
k=1 3.022 2246
k=2 4492 0.000

Conditional covariances

2
J=Lk=0 4259 sox_ | 2486
Jj=2,k=1 12354 10 —0.243
Parameter covariance matrix 3¢
k=0 k=
500 -2.00 [ 355 —1.86 ]
—2.00 1.00 —-1.86 0.986
Riccati matrix Ki*
k=1 1392
k=2 1.000
Riccati matrix K2*
k=1 k=2
6.184] 0.000
2.156 0.000
Riccati matrix ¢ Probing cost
1.826 —4.072
~4072  9.080 L2830

Now compute the probing cost:

” 2.141 —4.546 2443  —1.455
P2=09 ”“ ~4.546 9.655][ ~1455  0.883 )

- 11.844 i

— 0 tr([ 15.139“ - (%)
Clearly, having two parameters and a larger a priori covariance matrix makes
the probing cost a more important component of the total cost-to-go.

Table 1 reports values for all of the variables above after increasing the
control value u, by 0.5. While (¥f{j)~"' has risen, the precision of the
posterior covariance matrix has actually fallen. All other things equal, this
will produce nonconvexities in the cost-to-go.
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Figs. 1 to 3 plot the elements of the posterior covariance matrix as u is
increased from its certainty equivalent of 3.257 by steps of 0.05, up to 6.257.
From (28), ad,, /du, =0 at u,= 5, dd,,/duy,= 0 at uy= 4.5, and dd,, /du, =0
at u, =5, for these parameters. 3** reaches its minima at u, = 4. The d;; are
the dominant factors though as can be seen in the figures. The minima and
the maxima for the parameter covariance elements all occur at the zeroes
of the d;;.

The %, are considerably easier to analyze in the two-period problem. Eq.
(19) reduces to

Z, [félTfob +P§:tb@]ﬂ~1 X [bKéufexl + (beﬂ)rl

Kby B
— XX
= | Kby + 52 py X [ K3 x,0bK5 Uy + X5
|

='-1-636](0.8)x[(—o.S)(1)[3.272 2316] + [0 4.632]]

3.474
_[ 2141 —4546
| —4.546 9‘655} (53)

The first derivative, (44), is also now tractable. Begin with the upper left
entry:

a[1,1]/0u, = (2#1b3K§'r'r)xl|{): =0.2xy, (54)
a[1,2) /auy = (n,ab?K3* — ulab*K3** — plab*K3**) x4
+ (1 b*K3 Yugo + (115°K5") x50
=0.084x 9 — 0.1uy o + 0.2x5,, (55)
3[2,2] /9uy = (2p,ab’K3* — 2ufab K3 — !-"-%GMK%”)”W
+(2abp, — Zp,z,ab“Kjx)xm
=0.168u,,y — 0.448x,,. (56)
Given the parameters in this example, these terms decline, in absolute value,
monotonically. As in Kendrick’s problem, they are contributing to a reduc-

tion in the probing cost. But as fig. 4 testifies, the overall probing cost rises
for sixteen steps until the posterior variance of b begins to fall.
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4.5

i
[

THETA(L,1)

25

3.26 3.76 4.26 4.76 5.26 5.76 6.26

Certainty Egquivalent Control
u(o)

Fig. 1. Example 1 - Posterior var(a).
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-2 -+
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3.26 3.76 4.26 4.76 5.26 5.76 6.26

Certainty Equivalent Control
u(o)

Fig. 2. Example 1 - Posterior cov(a, b).
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3.26

3.76 4.26 4.76 5.26 5.76 6.26

Certainty Equivalent Control
u(o)

Fig. 3. Example 1 - Posterior var(b).
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3.26
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—+

4.26 4.76 5.26

Certainty Equivalent Control
u(o)

Fig. 4. Example 1 — Probing cost.
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Since the problem is only two periods long, initial conditions are impor-
tant. They affect the problem in an interesting way. I simulated the effect of a
0.5 unit deviation away from the certainty-equivalent control for a range of
initial x values between 0 and 5, in steps of 0.1. For x, € [0, 1.5], the probing
cost declined with the increase in u,, with maximal reduction at 0.8.
At x,= 1.6, cov(a, x) becomes positive and, as section 4.1 detailed, the
pseudo-correlation becomes positive. The term in (31), 43 /du, =
2u, + 2x,cova, b), is still positive at this point, so all of (30) becomes
negative. The probing cost turns up at this point.

As x, continues to increase, d3** /du, turns negative and the last term in
(31) becomes positive. The maximum percentage increase in the probing cost
came at x,= 2.6. For x, > 2.6, the probing cost still rose, but in percentage
terms the increases became smaller monotonically.

In the next example, I show how % alone can contribute to nonconvexi-
ties, even with a single unknown parameter.

5.2. Example 2 — Volatility in the state raises the probing cost

With a single unknown, there can still be nonconvexities. This is not by any
means a more pathological case. Consider first the term of .%#, before taking
the cross-product. In the case of a single unknown only the bottom row is
relevant:

R,E[bu”o+x2|(,1. (57)
Noting that g, = 1/(1 + b?), the first derivative of this term is simply
dR,/du,= (ab —ab*) /(1 +b?). (58)

This will clearly be positive for b < —1. As for the Riccati matrix .%, the
lower right entry changes by

R, /oug = 2(buy g +x,0) R, /Uy . (59)

If b is sufficiently negative, the term in parentheses will go positive. To see
this, express the term as

—ab’xy— ab*u, — abc — be

+ a’x, + abu, + 2c.
a+b? 9 !

buyg +x50=2b
(60)

Once this turns positive, the probing cost will start to increase for given 3¢.
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Table 2
Example 2 — Volatility in the state increases the probing cost.
State equation Variance of state disturbance
Xppq=070%x, + —3.50%u, + 3.50 Q=0.200
Target values for state and control Penalty parameters
x=0.000, &=0.000 A=10, W=1.0

State and control variables

X0 e
k=0 2000 1345
k=1 0192 0.960
k=2 0274 0.000

Conditional covariances

£X
ik
j=1,k=0 4723 sox _ [0.000
=2 k=1 029 1o ] 3.363
Parameter covariance matrix 3¢
k=0 k=1
[0.00 0.00 0.00  0.000
0.00 250 0.00 0.106
Riccati matrix Kj*
k=1 1037
k=2 1.000
Riccati matrix K2+
k=1 k=2
0.284 [ 0.000
0.101 0.000
Riccati matrix .5 Probing cost
0.034 0.157
[ 0.157 0.719 A aes

Let’s choose parameters similar to the first example. Since a is no longer
an unknown, cov(a, b) = var(a) = 0. The value of b is decreased to —3.5 and
its variance is raised to 2.5. Everything else is unchanged. Table 2 reports all
the summary statistics.

At u,’s certainty-equivalent value of 1.345, (60) is negative. The expression
only turns positive at u, = 2.845. Surprisingly, as fig. 5 shows, var(b),;, drops
quite dramatically. At the certainty-equivalent value, it equals 0.1059. At the
point where R, starts to increase, it has fallen to 0.0245. The change in R, is
large enough to overcome the drop in the posterior variance of b, since its
proportionate reduction is quite small at that time.

The nonconvexity this gives rise to in the probing cost can be seen in fig. 6.
If for a given level of uncertainty, the path of state variables is more volatile
as you increase the control value, the probing cost will have nonconvexities.
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Fig. 6. Example 2 — Probing cost.
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A choice of b larger than 3.5 would have turned up the probing cost
considerably earlier.

The effects of initial conditions were more straightforward in this example.
With only a single uncertain parameter, increases in the control are raising
precision. The %, term must increase by an even larger factor to compen-
sate. Given the parameters, %, is increasing in both x, and u,. It naturally
follows that for deviations of u, from the certainty-equivalent large enough
to raise the probing cost, a larger x, made the percentage increase even
larger.

6. Conclusion

In a stochastic control model with learning, the programming problem
requires the controller to trade current-period losses for future rewards. The
convexity of this tradeoff is vital as it identifies the existence of an optimal
solution. In applications, Kendrick and others have discovered that this
tradeoff many not be everywhere smooth because of nonconvexities in the
probing cost term of the loss function.

This paper has identified two possible sources of nonconvexities. The
interaction between the state and parameter covariance may reduce the
amount of information gained from a particular state realization. Volatility
induced in future states may make a probing experiment costly.

Two numerical examples indicate that these sources of nonconvexities are
in no sense pathological. By providing conditions under which nonconvexities
are likely to arise, this paper should assist data analysts in isolating noncon-
vexities without resort to numerical analysis.
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